Ligand Dictated Photosensitization of Iridium(III) Dithiocarbamate Complexes for Photodynamic Therapy

Inorganic chemistry(2023)

引用 0|浏览0
暂无评分
摘要
Organelle-targeted photosensitizers (PSs) for photodynamic therapy (PDT) are considered as an effective therapeutic strategy for the development of next generation PSs with the least side effects and high therapeutic efficacy. However, multiorganelle targeted PSs eliciting PDT via both type I and type II mechanisms are scarce. Herein, a series of cyclometalated iridium(III) complexes were formulated [Ir((CN)-N-boolean AND)(2)((SS)-S-boolean AND)] ((CN)-N-boolean AND = 2-phenylpyridine (ppy) and 2-(thiophen-2-yl)pyridine (thpy); (SS)-S-boolean AND = diethyldithiocarbamate (DEDTC), morpholine-N-dithiocarbamate (MORDTC) and methoxycarbonodithioate (MEDTC)) and the newly designed complexes Ir2@DEDTC and Ir1@MEDTC were characterized by single crystal X-ray crystallography. Complexes containing thpy as (CN)-N-boolean AND ligand exhibit excellent photophysical properties such as red-shifted emission, high singlet oxygen quantum yield (phi(Delta)) and longer photoluminescence lifetime when compared with complexes containing ppy ligands. Ir2@DEDTC exhibits the highest phi(Delta) and photoluminescence lifetimes among the synthesized complexes. Therefore, Ir2@DEDTC was chosen to evaluate the photosensitizing ability to produce reactive oxygen species (ROS). Upon blue light irradiation (456 nm), it efficiently produces ROS, i.e., hydroxy radical ((OH)-O-center dot) and singlet oxygen (O-1(2)), which was confirmed by electron paramagnetic resonance (EPR) spectroscopy. In vitro photocytotoxicity toward HCT116, HeLa, and PC3 cell lines showed that out of all the synthesized complexes, Ir2@DEDTC has the highest photocytotoxic index (PI > 400) value. Ir2@DEDTC is efficiently taken up by the HCT116 cell line and accumulated mainly in the lysosome and mitochondria of the cells, and after PDT treatment, it elicits cell shrinkage, membrane blebbing, and DNA fragmentation. The phototherapeutic efficacy of Ir2@DEDTC has been investigated against 3D spheroids considering its ability to mimic some of the basic features of solid tumors. The morphology was drastically altered in the Ir2@DEDTC treated 3D spheroid after the light irradiation unleashed the potential of the Ir(III) dithiocarbamate complex as a superior PS for PDT. Hence, mitochondria and lysosome targeted photoactive cyclometalated Ir(III) dithiocarbamate complex exerting oxidative stress via both type I and type II PDT can be regarded as a dual-organelle targeted two-pronged approach for enhanced PDT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要