Alteration of carbon and nitrogen allocation in winter wheat under elevated ozone

PLANT SCIENCE(2024)

引用 0|浏览2
暂无评分
摘要
Tropospheric ozone accelerates senescence and shortens grain filling, consequently affecting the remobilization and allocation efficiency of aboveground biomass and nutrients into grains in cereal crops. This study investigated carbon (C) and nitrogen (N) concentrations repeatedly in shoot biomass during the growth period and in grain after the harvest in eighteen wheat genotypes under control and ozone treatments in open-top chambers. Season-long ozone fumigation was conducted at an average ozone concentration of 70 ppb with three additional acute ozone episodes of around 150 ppb. Although there were no significant differences in straw C and N concentrations between the two treatments, the straw C:N ratio was significantly increased after long-term ozone fumigation, and the grain C:N ratio decreased under elevated ozone without significance. Grain N concentrations increased significantly under ozone stress, whereas N yield declined significantly due to grain yield losses induced by ozone. Moreover, different indicators of N use efficiency were significantly reduced with the exception of N utilization efficiency (NUtE), indicating that elevated ozone exposure reduced the N absorption from soil and allocation from vegetative to reproductive organs. The linear regression between straw C:N ratio and productivity indicated that straw C:N was not a suitable trait for predicting wheat productivity due to the low coefficient of determination (R2). Nitrogen harvest index (NHI) was not significantly affected by ozone stress among all genotypes. However, elevated ozone concentration changed the relationship between harvest index (HI) and NHI, and the reduced regression slope between them indicated that ozone exposure significantly affected the relationship of N and biomass allocation into wheat grains. The cultivar "Jenga" showed optimal ozone tolerance due to less yield reduction and higher NUE after ozone exposure. The genotypes with higher nutrient use efficiencies are promising to cope with ozone-induced changes in nitrogen partitioning.
更多
查看译文
关键词
Air pollution,Ozone,Cereals,Nitrogen allocation,Grain quality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要