Efficient Photothermal Anti-/Deicing Enabled by 3D Cu2-x S Encapsulated Phase Change Materials Mixed Superhydrophobic Coatings.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 0|浏览1
暂无评分
摘要
Photothermal superhydrophobic surfaces are one of the most promising anti-/deicing materials, yet they are limited by the low energy density and intermittent nature of solar energy. Here, a coupling solution based on microencapsulated phase change materials (MPCMs) that integrates photothermal effect and phase change thermal storage is proposed. Dual-shell octahedral MPCMs with Cu2 O as the first layer and 3D Cu2-x S as the second layer for the first time is designed. By morphology and phase manipulation of the Cu2-x S shell, the local surface plasmonic heating modulation of MPCMs is realized, and the MPCM reveals full-spectrum high absorption with a photothermal conversion efficiency up to 96.1%. The phase change temperature and enthalpy remain in good consistency after 200 cycles. Multifunctional photothermal phase-change superhydrophobic composite coatings are fabricated by combining the hydrolyzed and polycondensation products of octadecyl trichlorosilane and the dual-shell MPCM. The multifunctional coatings exhibit excellent anti-/deicing performance under low temperature and high humidity conditions. This work not only provides a new approach for the design of high-performance MPCMs but also opens up an avenue for the anti-icing application of photothermal phase-change superhydrophobic composite coatings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要