Development of bioactive and antimicrobial nano-topography over selective laser melted Ti6Al4V implant and its in-vitro corrosion behavior

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
Additive manufacturing (AM) or 3D printing of bone defect models is gaining much attention in the biomedical field as it could significantly facilitate the development of customized implants with a high degree of dimensional accuracy. Due to their satisfactory biocompatibility and minimal stress shielding effect, Ti6Al4V (Ti64) alloys are increasingly preferred in the development of such implants. However, their poor osseointegration abilities and lack of antibacterial properties often cause implant loosening and microbial infections, leading to implant failure. To address these drawbacks, we propose in this work a simple surface modification approach of customized Ti64 alloys (3D printed Ti6Al4V) that enables the formation of porous calcium titanate (CT) over their surface as well as the incorporation of silver nanoparticles (AgNPs) into the thus formed porous network. The successful CT formation with the incorporation of AgNPs throughout the 3D printed Ti64 surface and their influence in changing the morphological and mechanical behaviour were studied by Raman spectroscopy, SEM, AFM, Contact angle measurement, XPS, HR-TEM and nano-indentation. Antibacterial studies using Staphylococcus aureus and Escherichia coli, and in-vitro cell studies using MG-63 cell lines showed that surface modified samples resulting from the proposed method exhibit satisfactory antimicrobial property and are highly biocompatible. The obtained surface modified samples also showed a significant improvement in corrosion resistance as compared to unmodified 3D printed Ti64 alloys. The improvement in corrosion resistance was revealed by electrochemical impedance Spectroscopy (EIS). Obtained results emphasis that thus surface modified 3D printed Ti64 alloys are promising candidates for hard tissue implant applications.
更多
查看译文
关键词
Additive manufacturing,Customized implants,Surface modification,Antibacterial activity,Biocompatibility and corrosion resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要