A High-Frequency Flexible Ultrasonic Cuff Implant for High-Precision Vagus Nerve Ultrasound Neuromodulation

Cornelis van Damme,Gandhika K. Wardhana, Andrada Iulia Velea,Vasiliki Giagka,Tiago L. Costa

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
In the emerging research field of bioelectronic medicine, it has been indicated that neuromodulation of the Vagus Nerve (VN) has the potential to treat various conditions such as epilepsy, depression, and autoimmune diseases. In order to reduce side effects, as well as to increase the effectiveness of the delivered therapy, subfascicle stimulation specificity is required. In the electrical domain, increasing spatial selectivity can only be achieved using invasive and potentially damaging approaches like compressive forces or nerve penetration. To avoid these invasive methods, while obtaining a high spatial selectivity, a 2 mm diameter extraneural cuff-shaped proof-of-concept design with integrated Lead Zirconate Titanate (PZT) based ultrasound (US) transducers is proposed in this paper. For the development of the proposed concept, wafer-level microfabrication techniques are employed. Moreover, acoustic measurements are performed on the device, in order to characterize the ultrasonic beam profiles of the integrated PZT-based US transducers. A focal spot size of around 200 {\mu}m by 200 {\mu}m is measured for the proposed cuff. Moreover, the curvature of the device leads to constructive interference of the US waves originating from multiple PZT-based US transducers, which in turn leads to an increase of 45% in focal pressure compared to the focal pressure of a single PZT-based US transducer. Integrating PZT-based US transducers in an extraneural cuff-shaped design has the potential to achieve high-precision US neuromodulation of the Vagus Nerve without requiring intraneural implantation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要