Genome analysis of haloalkaline isolates from the soda saline crater lake of Isabel Island; comparative genomics and potential metabolic analysis within the genus Halomonas

BMC Genomics(2023)

引用 0|浏览2
暂无评分
摘要
Background Isabel Island is a Mexican volcanic island primarily composed of basaltic stones. It features a maar known as Laguna Fragatas, which is classified as a meromictic thalassohaline lake. The constant deposition of guano in this maar results in increased levels of phosphorus, nitrogen, and carbon. The aim of this study was to utilize high-quality genomes from the genus Halomonas found in specialized databases as a reference for genome mining of moderately halophilic bacteria isolated from Laguna Fragatas. This research involved genomic comparisons employing phylogenetic, pangenomic, and metabolic-inference approaches. Results The Halomonas genus exhibited a large open pangenome, but several genes associated with salt metabolism and homeostatic regulation ( ect ABC and bet ABC), nitrogen intake through nitrate and nitrite transporters ( nas A, and nar GI), and phosphorus uptake ( pst ABCS) were shared among the Halomonas isolates. Conclusions The isolated bacteria demonstrate consistent adaptation to high salt concentrations, and their nitrogen and phosphorus uptake mechanisms are highly optimized. This optimization is expected in an extremophile environment characterized by minimal disturbances or abrupt seasonal variations. The primary significance of this study lies in the dearth of genomic information available for this saline and low-disturbance environment. This makes it important for ecosystem conservation and enabling an exploration of its biotechnological potential. Additionally, the study presents the first two draft genomes of H. janggokensis .
更多
查看译文
关键词
Genome mining,Halomonas,Halophilic lake,Metabolic capacities,Mexican lake
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要