Tungsten Filled 3-Dimensional Printed Lung Blocks for Total Body Irradiation

Practical radiation oncology(2023)

引用 0|浏览9
暂无评分
摘要
PURPOSE:Lung blocks for total-body irradiation are commonly used to reduce lung dose and prevent radiation pneumonitis. Currently, molten Cerrobend containing toxic materials, specifically lead and cadmium, is poured into molds to construct blocks. We propose a streamlined method to create 3-dimensional (3D)-printed lung block shells and fill them with tungsten ball bearings to remove lead and improve overall accuracy in the block manufacturing workflow. METHODS AND MATERIALS:3D-printed lung block shells were automatically generated using an inhouse software, printed, and filled with 2 to 3 mm diameter tungsten ball bearings. Clinical Cerrobend blocks were compared with the physician drawn blocks as well as our proposed tungsten filled 3D-printed blocks. Physical and dosimetric comparisons were performed on a linac. Dose transmission through the Cerrobend and 3D-printed blocks were measured using point dosimetry (ion-chamber) and the on-board Electronic-Portal-Imaging-Device (EPID). Dose profiles from the EPID images were used to compute the full-width-half-maximum and to compare with the treatment-planning-system. Additionally, the coefficient-of-variation in the central 80% of full-width-half-maximum was computed and compared between Cerrobend and 3D-printed blocks. RESULTS:The geometric difference between treatment-planning-system and 3D-printed blocks was significantly lower than Cerrobend blocks (3D: -0.88 ± 2.21 mm, Cerrobend: -2.28 ± 2.40 mm, P = .0002). Dosimetrically, transmission measurements through the 3D-printed and Cerrobend blocks for both ion-chamber and EPID dosimetry were between 42% to 48%, compared with the open field. Additionally, coefficient-of-variation was significantly higher in 3D-printed blocks versus Cerrobend blocks (3D: 4.2% ± 0.6%, Cerrobend: 2.6% ± 0.7%, P < .0001). CONCLUSIONS:We designed and implemented a tungsten filled 3D-printed workflow for constructing total-body-irradiation lung blocks, which serves as an alternative to the traditional Cerrobend based workflow currently used in clinics. This workflow has the capacity of producing clinically useful lung blocks with minimal effort to facilitate the removal of toxic materials from the clinic.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要