Subnodal Correspondence of PSMA Expression and USPIO-MRI in Metastatic Pelvic Lymph Nodes in Prostate Cancer.

Investigative radiology(2023)

引用 0|浏览1
暂无评分
摘要
OBJECTIVES:Two advanced imaging modalities used to detect lymph node (LN) metastases in prostate cancer patients are prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography and ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI). As these modalities use different targets, a subnodal comparison is needed to interpret both their correspondence and their differences. The aim of this explorative study was to compare ex vivo 111In-PSMA μSPECT images with high-resolution 7 T USPIO μMR images and histopathology of resected LN specimens from prostate cancer patients to assess the degree of correspondence at subnodal level. MATERIALS AND METHODS:Twenty primary prostate cancer patients who underwent pelvic LN dissection were included and received USPIO contrast and 111In-PSMA. A total of 41 LNs of interest (LNOIs) were selected for ex vivo imaging based on γ-probe detection or palpation. μSPECT and μMRI acquisition were performed immediately after resection. Overlay of μSPECT images on MR images was performed, and the level of correspondence (LoC) between μSPECT and μMR findings was assessed according to a 4-point Likert classification scheme. RESULTS:Forty-one LNOIs could be matched to an LN on ex vivo μMRI. Coregistration of μSPECT and USPIO-enhanced water-selective multigradient echo MR images was successful for all 41 LNOIs. Ninety percent of the lesions showed excellent correspondence regarding the presence of metastatic tissue and affected subnodal site (LoC 4; 37/41). In only 1 of 41 LNOIs, a small metastasis was misclassified by both techniques. Three LNOIs were classified as LoC 3 (7%) and 1 LNOI as LoC 2. All LoC 2 and LoC 3 lesions had PSMA-expressing metastases on final histopathology. CONCLUSIONS:Coregistration of μSPECT and USPIO-μMRI showed excellent subnodal correspondence in the majority (90%) of LNs. Ex vivo imaging may thus help localize small cancer deposits within resected LNs and could contribute to improved interpretation of in vivo imaging of LNs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要