A Large Field-of-view, Single-cell-resolution Two- and Three-Photon Microscope for Deep Imaging.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览1
暂无评分
摘要
In vivo imaging of large-scale neuron activity plays a pivotal role in unraveling the function of the brain's network. Multiphoton microscopy, a powerful tool for deep-tissue imaging, has received sustained interest in advancing its speed, field of view and imaging depth. However, to avoid thermal damage in scattering biological tissue, field of view decreases exponentially as imaging depth increases. We present a suite of innovations to overcome constraints on the field of view in three-photon microscopy and to perform deep imaging that is inaccessible to two-photon microscopy. These innovations enable us to image neuronal activities in a ~3.5-mm diameter field-of-view at 4 Hz with single-cell resolution and in the deepest cortical layer of mouse brains. We further demonstrate simultaneous large field-of-view two-photon and three-photon imaging, subcortical imaging in the mouse brain, and whole-brain imaging in adult zebrafish. The demonstrated techniques can be integrated into any multiphoton microscope for large-field-of-view and system-level neural circuit research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要