A facile strategy to fabricate a skin-like hydrogel with adhesive and highly stretchable attributes through small molecule triggering toward flexible electronics

JOURNAL OF MATERIALS CHEMISTRY B(2023)

引用 0|浏览1
暂无评分
摘要
Polyacrylamide hydrogel is a promising matrix in biomedical applications due to its biocompatibility, transparency and flexibility. However, its implementation in skin-attachable applications is impeded by its inherent deficiency in surface-adaptive adhesion and inadequate mechanical conformity to skin tissues. Herein, tris, a biocompatible small molecule with a triple hydrogen bonding cluster in its molecule structure, is introduced for the first time into a polyacrylamide hydrogel. This incorporation is achieved via a facile one-pot strategy, resulting in a highly stretchable hydrogel with an impressive strain capacity (2574.75 +/- 28.19%), a human dermis tissue-compatible Young's modulus (27.89 +/- 2.05 kPa) and an intrinsically universal adhesion capacity (16.66 +/- 0.32 N). These superior properties are attributed to the elevated hydrogen bonding density and the plasticizing effect induced by tris, without compromising the hydrogel's excellent transparency (>90% transmittance). Moreover, by incorporating calcium ions into the resulting soft adhesive hydrogel, we demonstrate its utility in skin-like sensors, leading to a substantial enhancement in strain sensitivity and electrical conductivity, in conjunction with the plasticizing influence exerted by tris. This work offers a facile and environmentally friendly solution to fabricate ultra-stretchable adhesive polyacrylamide hydrogel matrixes for dynamic surfaces, even under large deformation, which can broaden their potential applications in integrated bioelectronics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要