Double-Free-Layer Stochastic Magnetic Tunnel Junctions with Synthetic Antiferromagnets

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
Stochastic magnetic tunnel junctions (sMTJ) using low-barrier nanomagnets have shown promise as fast, energy-efficient, and scalable building blocks for probabilistic computing. Despite recent experimental and theoretical progress, sMTJs exhibiting the ideal characteristics necessary for probabilistic bits (p-bit) are still lacking. Ideally, the sMTJs should have (a) voltage bias independence preventing read disturbance (b) uniform randomness in the magnetization angle between the free layers, and (c) fast fluctuations without requiring external magnetic fields while being robust to magnetic field perturbations. Here, we propose a new design satisfying all of these requirements, using double-free-layer sMTJs with synthetic antiferromagnets (SAF). We evaluate the proposed sMTJ design with experimentally benchmarked spin-circuit models accounting for transport physics, coupled with the stochastic Landau-Lifshitz-Gilbert equation for magnetization dynamics. We find that the use of low-barrier SAF layers reduces dipolar coupling, achieving uncorrelated fluctuations at zero-magnetic field surviving up to diameters exceeding (D≈ 100 nm) if the nanomagnets can be made thin enough (≈ 1-2 nm). The double-free-layer structure retains bias-independence and the circular nature of the nanomagnets provides near-uniform randomness with fast fluctuations. Combining our full sMTJ model with advanced transistor models, we estimate the energy to generate a random bit as ≈ 3.6 fJ, with fluctuation rates of ≈ 3.3 GHz per p-bit. Our results will guide the experimental development of superior stochastic magnetic tunnel junctions for large-scale and energy-efficient probabilistic computation for problems relevant to machine learning and artificial intelligence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要