A Reinforcement Learning Based Backfilling Strategy for HPC Batch Jobs

Elliot Kolker-Hicks,Di Zhang,Dong Dai

SC-W '23: Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis(2024)

引用 0|浏览8
暂无评分
摘要
High Performance Computing (HPC) systems are used across a wide range of disciplines for both large and complex computations. HPC systems often receive many thousands of computational tasks at a time, colloquially referred to as jobs. These jobs must then be scheduled as optimally as possible so they can be completed within a reasonable timeframe. HPC scheduling systems often employ a technique called backfilling, wherein low-priority jobs are scheduled earlier to use the available resources that are waiting for the pending high-priority jobs. To make it work, backfilling largely relies on job runtime to calculate the start time of the ready-to-schedule jobs and avoid delaying them. It is a common belief that better estimations of job runtime will lead to better backfilling and more effective scheduling. However, our experiments show a different conclusion: there is a missing trade-off between prediction accuracy and backfilling opportunities. To learn how to achieve the best trade-off, we believe reinforcement learning (RL) can be effectively leveraged. Reinforcement Learning relies on an agent which makes decisions from observing the environment, and gains rewards or punishments based on the quality of its decision-making. Based on this idea, we designed RLBackfilling, a reinforcement learning-based backfilling algorithm. We show how RLBackfilling can learn effective backfilling strategies via trial-and-error on existing job traces. Our evaluation results show up to 59 average bounded job slowdown) compared to EASY backfilling using user-provided job runtime and 30 predicted job runtime (the actual job runtime).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要