Observational evidence of accelerating electron holes and their effects on passing ions

Nature communications(2023)

引用 0|浏览2
暂无评分
摘要
As a universal structure in space plasma, electron holes represent an obvious signature of nonlinear process. Although the theory has a 60-year history, whether electron hole can finally accelerate ambient electrons (or ions) is quite controversial. Previous theory for one-dimensional holes predicts that net velocity change of passing electrons (or ions) occurs only if the holes have non-zero acceleration. However, the prediction has not yet been demonstrated in observations. Here, we report four electron holes whose acceleration/deceleration is obtained by fitting the spatial separations and detection time delays between different Magnetospheric Multiscale spacecraft. We find that electron hole acceleration/deceleration is related to the ion velocity distribution gradient at the hole’s velocity. We observe net velocity changes of ions passing through the accelerating/decelerating holes, in accordance with theoretical predictions. Therefore, we show that electron holes with non-zero acceleration can cause the velocity of passing ions to increase in the acceleration direction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要