Recent advances on innovative bioactive glass-hydroxyapatite composites for bone tissue applications: Processing, mechanical properties, and biological performance

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY(2023)

引用 1|浏览0
暂无评分
摘要
New Hydroxyapatite-Bioactive Glass composites, xHA-(1-x)BG (x = 25, 50, and 75 wt %), are developed using HA and BGMS10 glass powders co-milled up to 2 h prior to Spark Plasma Sintering (SPS). Ball milling (BM) promoted the consolidation of HA-rich powders, whereas hindered the densification of 25HA-75BG samples. HA crystallite size is reduced from > 200 nm (unmilled) to 60 (x = 25 %) or 88 nm (x = 75 %) when using 2 h milled mixtures. Glass crystallization occurred in 75HA-25BG samples processed by SPS at 950 C: a negligeable effect in the amount of the residual amorphous phase (12.3-13.3 wt %) is produced by BM, while changes are observed in the relative content of crystalline phases, with SiO2 increases from 8.5 to 13.1 wt %, whereas alpha-and beta-CaSiO3 correspondingly decrease. Superior Young's modulus and Vickers hardness (130 GPa and 726, respectively) are obtained in HA rich products. Biological tests evidenced that the milling treatment does not determine negative consequences on cells viability.
更多
查看译文
关键词
Hydroxyapatite,Bioactive glass,Composites,Cellular tests,Bone tissue engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要