Flow-induced diffusion in a packed lattice of squirmers (vol 971, A17, 2023)

JOURNAL OF FLUID MECHANICS(2023)

引用 1|浏览2
暂无评分
摘要
Mass transport in suspensions of swimming microorganisms is one of the most important factors for the colonisation and growth of microorganisms. Hydrodynamic interactions among swimming microorganisms play an important role in mass transport, especially in highly concentrated suspensions. To elucidate the influence of highly concentrated cells on mass transport, we numerically simulated mass transport in lattices of squirmers that were fixed in space and oriented in the same direction. The effects of different volume fractions, Peclet numbers (Pe) and lattice configurations on mass transport were quantified by tracking Lagrangian material points that move with background flow with Brownian diffusivity. Although the flow field became periodic in space and each streamline basically extended in one direction, the motion of tracer particles became diffusive over long durations due to Brownian motion and cross-flows. Flow-induced diffusion was anisotropic and significantly enhanced over Brownian diffusion in the longitudinal direction. We also investigated mass transport in random configurations of squirmers to reproduce more general conditions. Similar enhanced diffusion was also observed in the random configurations, indicating that the flow-induced diffusion appears regardless of the configurations. The present flow-induced diffusion did not follow Pe dependency of the conventional Taylor dispersion due to the cross-flows. The time and velocity scales were proposed, which enabled us to predict the flow-induced diffusivity from the data of the flow field and Brownian diffusivity without solving the mass conservation equation. The findings reported here improve our understanding of the transport phenomena in packed suspensions of swimming microorganisms.
更多
查看译文
关键词
diffusion,lattice,flow-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要