Effect of Transition Metals on Self-Assembly and Oxygen Reduction Properties of Graphene Nanoribbons

ACS APPLIED NANO MATERIALS(2023)

引用 0|浏览13
暂无评分
摘要
Electrocatalysts are core materials in metal-air batteries and fuel cells. How to prepare catalysts with special morphologies and design efficient active sites is always a challenging task. Fluorine has the highest electronegativity. In addition, F atoms have three lone pairs of electrons, which allow F to efficiently influence the charge distribution on the surface of the material. Here, some F, Fe/Zn codoped graphene-like nanoribbons are prepared in a controlled manner. Due to this structure, the active sites could be fully exposed, enhancing the catalytic efficiency in the oxygen reduction reaction (ORR). The results show that the ORR activity of F-doped graphene-like nanoribbon catalysts is 30 mV higher than that of commercial Pt/C catalysts. Density functional theory (DFT) calculations were performed to understand the mechanisms that underpin these results. DFT studies showed that (1) in the ORR process, the F-doped graphene nanoribbons are beneficial to oxygen molecules using the end-on adsorption model (Pauling model) and reduce the rate-determining step (RDS) barrier. (2) F-doping can weaken the bonding energy of the FeN4 site 3d orbital, which reduces the RDS barrier and is conducive to the formation and desorption of *OH.
更多
查看译文
关键词
oxygen reduction reaction, asymmetric FeN4 active sites, graphene nanoribbons, density functionaltheory, catalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要