Shale oil redistribution-induced flow regime transition in nanopores

ENERGY(2023)

引用 0|浏览0
暂无评分
摘要
The previous neglect of shale oil multi-component characteristics and the nanpore wall properties of real shale result in an insufficient understanding of shale oil flow mechanisms in nanopores. Meanwhile, research on the flow regimes of shale oil remains lacking. In this study, molecular dynamics simulations are employed to investigate the flow of shale oil in hydroxylated quartz nanopores and rough kerogen nanopores. Simulation results show that the flow regime changed as the pressure gradient (∇p) increased to a critical value (∇pc). The velocity profile was parabolic when ∇p < ∇pc, but gradually became piston-like when ∇p ≥ ∇pc. Because increasing ∇p leads the adsorbed molecules desorbing, aggregating in the pore center, and forming clusters that are not easy to shear. Increasing vertical force from pore wall causes fluid aggregation in the pore center as ∇p increases. The ∇pc in kerogen nanopores is larger than that in quartz nanopores due to the rough kerogen surface and sticky layers. Multi-component fluids have higher ∇pc than single-component fluids in quartz nanopores. However, they have the same ∇pc in kerogen nanopores due to the rough kerogen surface. This investigation can provide theoretical basis for high-efficient production of shale oil.
更多
查看译文
关键词
Shale oil,Nanopores,Flow regime transition,Pressure gradient,Fluid accumulation,Molecular dynamics simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要