Evaluation of Fume Suppression, Viscosity-Retarding, and Rheological Properties of Eco-Friendly High-Viscosity Modified Asphalt

Weidong Ning,Guoqiang Sun,Kexin Qiu, Xulai Jiang, Chunze Wang,Ruiqi Zhao

COATINGS(2023)

引用 0|浏览0
暂无评分
摘要
In order to address the issues of high viscosity and excessive fume exhaust associated with high-viscosity modified asphalt (HVMA), the objective of this study was to develop an eco-friendly HVMA by incorporating fume suppressants and viscosity-retarding agents (VRAs). To begin with, desulfurization rubber powder (DRP) was utilized as a modifier, and fume suppressants, including activated carbon, a chemical reaction fume suppressant, and a composite fume suppressant combining activated carbon and chemical reaction fume suppressant were added to the HVMA separately. The fume suppression effect and odor level were observed to determine the optimal fume suppressant composition for this study. Based on these observations, an area integration method was proposed, utilizing rotational viscosity testing and temperature sweeping experiments, evaluating the viscosity-retarding effect and mixing temperature when different amounts of Sasobit VRA, Evotherm3G VRA, and a composite VRA of Sasobit and Evotherm3G were added to the HVMA. This approach aimed to identify the eco-friendly HVMA with the most effective fume suppression and viscosity-retarding abilities. Furthermore, the morphology and rheological properties of the eco-friendly HVMA were examined through fluorescence microscopy, zero shear viscosity test, multiple stress creep recovery analysis, liner amplitude sweep test, and frequency sweep test. The results demonstrated that the HVMA formulation consisting of 15% DRP and 1% composite fume suppressant exhibited a satisfactory fume suppression effect and odor level. Based on this, the HVMA formulation containing 0.6% Evotherm3G and 3% Sasobit VRAs displayed the best viscosity-retarding effect while reducing the mixing temperature. Moreover, when compared to common HVMA, the eco-friendly HVMA exhibited excellent high-temperature resistance, successfully accomplishing the dual objectives of ecological friendliness and superior performance.
更多
查看译文
关键词
rheological properties,fume suppression,viscosity-retarding,eco-friendly,high-viscosity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要