C-C Bond Formation Coupled with C-C Bond Cleavage during Oxidative Upgrading of Glycerol on a Nanoporous BiVO 4 Photoanode.

Journal of the American Chemical Society(2023)

引用 0|浏览1
暂无评分
摘要
Production of biodiesel generates glycerol as a 10 wt% byproduct. Therefore, efficient and selective glycerol upgrading is critical for the sustainable production of biodiesel as well as for the production of chemicals from renewable feedstocks. In this study, the photoelectrochemical glycerol oxidation reaction (GOR) was investigated using a nanoporous BiVO photoanode in pH 9.3 and pH 2 buffer solutions. In both solutions, glycolaldehyde (GCAD), a C2 species, was the major product, which has never been the major product in any previous electrochemical or photoelectrochemical GOR study. To produce GCAD from the C3 species glycerol, C-C cleavage should occur to produce C2 and C1 species with a 1:1 ratio. Intriguingly, our results show that, during photoelectrochemical GOR on BiVO, more GCAD is produced than can be explained by simple C-C cleavage, meaning that GCAD is also produced from C-C coupling of two C1 species produced from C-C cleavage. This is equivalent to converting two glycerol molecules to three GCAD molecules, which offers an extraordinary way to maximize GCAD production. To gain further insight into the nature of this unprecedented C-C coupling during GOR, photoelectrochemical oxidation of intermediate oxidation products (glyceraldehyde and 1,3-dihydroxyacetone) and glycerol-1,3-C was compared to that of standard glycerol. Photoelectrochemical GOR was also compared with electrochemical GOR on BiVO to interrogate whether light is critical for the observed C-C coupling. Results obtained from comprehensive control experiments revealed critical information about C-C cleavage and C-C coupling during GOR on BiVO.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要