Phase Selectivity and Stability in Compositionally Complex Nano (nA1/n )Co2O4

CHEMISTRY OF MATERIALS(2023)

引用 0|浏览16
暂无评分
摘要
A family of compositionally complex spinels with the formula(nA(1/n))Co2O4 (A = combinations of Mg, Cr, Mn, Fe, Co, Ni, Cu, and Zn) was synthesized using a low-temperature softtemplating method. The phase selectivity and the temperature stability window for the series were found to depend strongly upon the A-site composition and only modestly on the number of elements (n) present on the A-site. Select control reactions and in situ high-temperature X-ray diffraction (XRD) uncovered a propensity for temperature-activated de-mixing for compositions containing Mg, Ni, Mn, and Fe. The A-site cations exhibit spatially heterogeneous distributions in the as-formed spinels, which diminish with intermediate thermal annealing, as shown by scanning transmission electron microscopy (STEM)/energy dispersive spectroscopy (EDS) and X-ray line profile analysis. The single spinel phases obtained are metastable, separating into a mix of impurity phases and multiple spinel phases with higher temperature annealing. Furthermore, we demonstrate that a '' continuous lattice '' parameterization of the compositionally complex oxide structure provides a rapid means by which to examine the heterogeneity of the cation distribution through full profile refinement. The demonstrated tunability of the cation distribution or clustering in these compositionally complex spinels via thermodynamic levers affords interesting opportunities for rational design of functional materials.
更多
查看译文
关键词
compositionally complex nano,phase selectivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要