Observational constraints on the origin of the elements. VIII. Constraining the Barium, Strontium and Yttrium chemical evolution in metal-poor stars

G. Guiglion, M. Bergemann, N. Storm, J. Lian, G. Cescutti,A. Serenelli

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
Recently Lian et al. (2023), thanks to Gaia-ESO data, studied the chemical evolution of neutron-capture elements in the regime [Fe/H]>-1. We aim here to complement this study down to [Fe/H]=-3, and focus on Ba, Y, Sr, and abundance ratios of [Ba/Y] and [Sr/Y], which give comprehensive views on s-process nucleosynthesis channels. We measured LTE and NLTE abundances of Ba, Y, and Sr in 323 Galactic metal-poor stars using high-resolution optical spectra with high S/N. We used the spectral fitting code TSFitPy, together with 1D model atmospheres using previously determined LTE and NLTE atmospheric parameters. The NLTE effects are on the order of -0.1 to ~0.2dex depending on the element. T he ratio between heavy and light s-process elements [Ba/Y] varies weakly with [Fe/H] even in the metal-poor regime, consistently with the behavior in the metal-rich regime. The [Ba/Y] scatter at a given metallicity is larger than the abundance measurement uncertainties. Homogeneous chemical evolution models with different yields prescriptions are unable to accurately reproduce the [Ba/Y] scatter at low-[Fe/H]. Adopting the stochastic chemical evolution model by Cescutti & Chaippini (2014) allows to reproduce the observed scatter in the abundance pattern of [Ba/Y] and [Ba/Sr]. With our observations, we rule out the need for an arbitrary scaling of the r-process contribution as previously suggested by the model authors. We have showed how important it is to properly include NLTE effects when measuring chemical abundances, especially in the metal-poor regime. This work shows that the choice of the Galactic chemical evolution model (stochastic vs. 1-zone) is key when comparing models to observations. The upcoming surveys such as 4MOST and WEAVE will deliver high quality spectra of many thousands of metal-poor stars, and this work gives a typical case study of what could be achieved with such surveys.
更多
查看译文
关键词
yttrium chemical evolution,strontium,elements,stars,barium,metal-poor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要