Aligning Gradient and Hessian for Neural Signed Distance Function.

NeurIPS(2023)

引用 0|浏览16
暂无评分
摘要
The Signed Distance Function (SDF), as an implicit surface representation, provides a crucial method for reconstructing a watertight surface from unorganized point clouds. The SDF has a fundamental relationship with the principles of surface vector calculus. Given a smooth surface, there exists a thin-shell space in which the SDF is differentiable everywhere such that the gradient of the SDF is an eigenvector of its Hessian matrix, with a corresponding eigenvalue of zero. In this paper, we introduce a method to directly learn the SDF from point clouds in the absence of normals. Our motivation is grounded in a fundamental observation: aligning the gradient and the Hessian of the SDF provides a more efficient mechanism to govern gradient directions. This, in turn, ensures that gradient changes more accurately reflect the true underlying variations in shape. Extensive experimental results demonstrate its ability to accurately recover the underlying shape while effectively suppressing the presence of ghost geometry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要