SyncBleed: A Realistic Threat Model and Mitigation Strategy for Zero-Involvement Pairing and Authentication (ZIPA).

CoRR(2023)

引用 0|浏览0
暂无评分
摘要
Zero Involvement Pairing and Authentication (ZIPA) is a promising technique for auto-provisioning large networks of Internet-of-Things (IoT) devices. Presently, these networks use password-based authentication, which is difficult to scale to more than a handful of devices. To deal with this challenge, ZIPA enabled devices autonomously extract identical authentication or encryption keys from ambient environmental signals. However, during the key negotiation process, existing ZIPA systems leak information on a public wireless channel which can allow adversaries to learn the key. We demonstrate a passive attack called SyncBleed, which uses leaked information to reconstruct keys generated by ZIPA systems. To mitigate SyncBleed, we present TREVOR, an improved key generation technique that produces nearly identical bit sequences from environmental signals without leaking information. We demonstrate that TREVOR can generate keys from a variety of environmental signal types under 4 seconds, consistently achieving a 90-95% bit agreement rate across devices within various environmental sources.
更多
查看译文
关键词
authentication,realistic threat model,zipa,zero-involvement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要