Soft Humanoid Finger with Magnetic Tactile Perception.

ICIRA (5)(2023)

引用 0|浏览12
暂无评分
摘要
The human skin is equipped with various receptors that sense external stimuli and provide tactile information to the body. Similarly, robots require sensors to perceive their environment and interact with it. Inspired by the bionics of human skin, we have developed a magnetic haptic tactile sensor that mimics the softness of the human finger skin. Our magnetic finger abdomen deforms when it comes in contact with an object, causing a change in magnetic flux density. The three-dimensional Hall sensor detects this change in magnetic field signal, allowing us to accurately measure the normal force applied to the sensor. There is a linear relationship between the z-axis magnetic field signal and the magnitude of the normal force (R 2 > 0.988). Our single bionic magnetic finger abdomen sensor has a Root Mean Squared Error of only 0.18N for the detection range of 0–10N, and force measurement accuracy of up to 95.5%. Our soft sensory skin is simple to manufacture, interchangeable, and customizable to meet the needs of haptic soft surfaces. Experimental results show that the sensor can accurately predict the normal force and the soft humanoid finger can stabilize the envelope grasp. This study provides a new idea for the design of magneto-tactile sensors, which is of great significance for the study of dexterous hand-grasping operations.
更多
查看译文
关键词
soft humanoid finger,perception
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要