A Multi-task Network for Anatomy Identification in Endoscopic Pituitary Surgery

MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IX(2023)

引用 0|浏览7
暂无评分
摘要
Pituitary tumours are in an anatomically dense region of the body, and often distort or encase the surrounding critical structures. This, in combination with anatomical variations and limitations imposed by endoscope technology, makes intra-operative identification and protection of these structures challenging. Advances in machine learning have allowed for the opportunity to automatically identifying these anatomical structures within operative videos. However, to the best of the authors' knowledge, this remains an unaddressed problem in the sellar phase of endoscopic pituitary surgery. In this paper, PAINet (Pituitary Anatomy Identification Network), a multi-task network capable of identifying the ten critical anatomical structures, is proposed. PAINet jointly learns: (1) the semantic segmentation of the two most prominent, largest, and frequently occurring structures (sella and clival recess); and (2) the centroid detection of the remaining eight less prominent, smaller, and less frequently occurring structures. PAINet utilises an EfficientNetB3 encoder and a U-Net++ decoder with a convolution layer for segmentation and pooling layer for detection. A dataset of 64-videos (635 images) were recorded, and annotated for anatomical structures through multi-round expert consensus. Implementing 5-fold cross-validation, PAINet achieved 66.1% and 54.1% IoU for sella and clival recess semantic segmentation respectively, and 53.2% MPCK-20% for centroid detection of the remaining eight structures, improving on single-task performances. This therefore demonstrates automated identification of anatomical critical structures in the sellar phase of endoscopic pituitary surgery is possible.
更多
查看译文
关键词
minimally invasive surgery,semantic segmentation,surgical AI,surgical vision
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要