Fabrication of Ultrafine Cu2 O Nanoparticles on W18 O49 Ultra-Thin Nanowires by In-Situ Reduction for Highly Efficient Photocatalytic Nitrogen Fixation.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 0|浏览0
暂无评分
摘要
Photocatalytic ammonia synthesis technology is one of the important methods to achieve green ammonia synthesis. Herein, two samples of Cu ion-doped W18 O49 with different morphologies, ultra-thin nanowires (Cu-W18 O49 -x UTNW) and sea urchin-like microspheres (Cu-W18 O49 -x SUMS), are synthesized by a simple solvothermal method. Subsequently, Cu2 O-W18 O49 -x UTNW/SUMS is synthesized by in situ reduction, where the NH3 production rate of Cu2 O-W18 O49 -30 UTNW is 252.4 µmol g-1  h-1 without sacrificial reagents, which is 11.8 times higher than that of the pristine W18 O49 UTNW. The Cu2 O-W18 O49 -30 UTNW sample is rich in oxygen vacancies, which promotes the chemisorption and activation of N2 molecules and makes the N≡N bond easier to dissociate by proton coupling. In addition, the in situ reduction-generated Cu2 O nanoparticles exhibit ideal S-scheme heterojunctions with W18 O49 UTNW, which enhances the internal electric field strength and improves the separation and transfer efficiency of the photogenerated carriers. Therefore, this study provides a new idea for the design of efficient nitrogen fixation photocatalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要