Wire-in-tube nanofiber as one side to construct specific-shaped Janus nanofiber with improved upconversion luminescence and tunable magnetism

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览13
暂无评分
摘要
It is an important strategy to rationally design and construct specific-shaped microscopic nanostructures for developing poly-functional nanomaterials for different advanced applications. In this work, a novel technique combining a parallel electrospinning with a subsequent bi-crucible fluorination is advanced and utilized to facilely synthesize a brand-new peculiar one-dimensional (1D) wire-in-tube nanofiber//nanofiber shaped Janus nanofiber (WJNF) to refrain from usual complicated preparation procedures. Partition of four independent domains in the peculiar-structured Janus nanofiber is microscopically realized. The Janus nanofiber with four microscopic partitions can be applied to assemble various functions to avoid adverse mutual impacts among functions to realize multi-functionalization of the materials. As a case study, [YF3:Yb3+, Er3+@SiO2]//CoFe2O4 WJNFs with synchronous excellent upconversion luminescence and tunable magnetism are designed and constructed by the above technique. One side of the WJNF is composed of YF3:Yb3+, Er3+@SiO2 wire-in-tube nanofiber with YF3:Yb3+, Er3+ nanofiber as core layer and SiO2 as shell layer, and the other side is composed of CoFe2O4 magnetic nanofiber. YF3:Yb3+, Er3+ green upconversion luminescent nanofiber is completely separated from CoFe2O4 to fully avoid the weakening of luminescent intensity caused by the direct contact between luminescent and magnetic substances, and thus the luminescent intensity of [YF3:Yb3+, Er3+@SiO2]//CoFe2O4 WJNFs is apparently enhanced. Up-conversion luminescent intensity and magnetism of the WJNFs are modulated by tuning the contents of CoFe2O4. With the increase of CoFe2O4 content, the saturation magnetization of the WJNFs increases from 3.91 to 12.90 emu center dot g(-1), revealing the tunable magnetism of the product. The formation mechanism of WJNFs is advanced, and a corresponding facile construction technique is established to shun complicated process, which provides theoretical guidance and technical support for the design and preparation of other poly-functional nanomaterials.
更多
查看译文
关键词
Janus nanofiber,Parallel electrospinning,Fluorination,Upconversion luminescence,Magnetism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要