Effects of hydrogen on PAH and soot formation in laminar diffusion flames of RP-3 jet kerosene and its surrogate

FUEL(2024)

引用 0|浏览8
暂无评分
摘要
PAH and soot are harmful substances that can be produced in any type of combustion equipment including aircraft engines. The co-combustion of hydrogen and jet fuel has been applied in aero-engine combustors and large-scale hydrogen addition is a promising solution for reducing the consumption of fossil fuels in the aviation industry. However, it remains unclear how H-2 influences the soot and PAH formation characteristics of jet kerosene. In this study, to investigate the impact of H-2 on soot and PAH formation, planar laser-induced incandescence (PLII), planar laser-induced fluorescence of PAH (PAH-PLIF) and chemical kinetic simulation were conducted for the laminar diffusion flames of RP-3 jet kerosene and its surrogate S1 with different H-2 doping rates. It is found that the introduction of H-2 leads to the increased soot formation. However, the promotion effect of H-2 on the PAH formation weakens as the number of PAH rings increases, and the formation of A4 is significantly inhibited. But the rapidly increase of benzene and alkynes in the H-2-doped kerosene flame may ultimately lead to the promotion of soot formation. Furthermore, the changes in direct synthesis reactions and PAH=>PAH- jointly affect the converse changes in A1 and A4 formation. These findings will contribute to the development of the soot model and soot/PAH-reduction strategy for the co-combustion of jet fuels and hydrogen.
更多
查看译文
关键词
Hydrogen,soot/PAH formation,Aviation kerosene surrogate,PLII/PLIF,Chemical kinetic modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要