Self-consistent treatment of thermal effects in neutron-star post-mergers: observational implications for third-generation gravitational-wave detectors

arXiv (Cornell University)(2023)

引用 0|浏览3
暂无评分
摘要
We assess the impact of accurate, self-consistent modelling of thermal effects in neutron-star merger remnants in the context of third-generation gravitational-wave detectors. This is done through the usage, in Bayesian model selection experiments, of numerical-relativity simulations of binary neutron star (BNS) mergers modelled through: a) nuclear, finite-temperature (or ``tabulated'') equations of state (EoSs), and b) their simplifed piecewise (or ``hybrid'') representation. These cover four different EoSs, namely SLy4, DD2, HShen and LS220. Our analyses make direct use of the Newman-Penrose scalar $\psi_4$ outputted by numerical simulations. Considering a detector network formed by three Cosmic Explorers, we show that differences in the gravitational-wave emission predicted by the two models are detectable with a natural logarithmic Bayes Factor $\log{\cal{B}}\geq 5$ at average distances of $d_L \simeq 50$Mpc, reaching $d_L \simeq 100$Mpc for source inclinations $\iota \leq 0.8$, regardless of the EoS. This impact is most pronounced for the HShen EoS. For low inclinations, only the DD2 EoS prevents the detectability of such modelling differences at $d_L \simeq 150$Mpc. Our results suggest that the usage a self-consistent treatment of thermal effects is crucial for third-generation gravitational wave detectors.
更多
查看译文
关键词
thermal effects,observational implications,self-consistent,neutron-star,post-mergers,third-generation,gravitational-wave
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要