RpoS activates formation of Salmonella Typhi biofilms and drives persistence in the gall bladder

biorxiv(2024)

引用 0|浏览1
暂无评分
摘要
The development of strategies for targeting the asymptomatic carriage of Salmonella Typhi in chronic typhoid patients has suffered owing to our basic lack of understanding of the molecular mechanisms that enable the formation of S. Typhi biofilms. Traditionally, studies have relied on cholesterol-attached biofilms formed by a closely related serovar, Typhimurium, to mimic multicellular Typhi communities formed on human gallstones. In long-term infections, S. Typhi adopts the biofilm lifestyle to persist in vivo and survive in the carrier state, ultimately leading to the spread of infections via the fecal-oral route of transmission. In the present work, we studied S. Typhi biofilms directly, applied targeted as well as genome-wide genetic approaches to uncover unique biofilm components that do not conform to the CsgD-dependent pathway established in S. Typhimurium. We undertook a genome-wide Tn5 mutation screen in a highly successful parental lineage of S. Typhi, strain H58, in gallstone-mimicking conditions. We generated New Generation Sequencing libraries based on the ClickSeq technology to identify the key regulators, IraP and RpoS, and the matrix components as Sth fimbriae, Vi capsule and lipopolysaccharide. We discovered that the starvation sigma factor, RpoS, was required for the transcriptional activation of matrix-encoding genes in vitro, and for S. Typhi colonization in persistent infections in vivo, using a heterologous fish larval model. An rpoS null mutant failed to colonize the gall bladder in chronic zebrafish infections. Overall, our work uncovered a novel RpoS-driven paradigm for the formation of cholesterol-attached Typhi biofilms, and emphasized the role(s) of stress signaling pathways for adaptation in chronic infections. Our identification of the biofilm regulators in S. Typhi paves the way for the development of drugs against typhoid carriage, which will ultimately control the increased incidence of gall bladder cancer in typhoid carriers. ### Competing Interest Statement A.L.R. is a co-founder and co-owner of ClickSeq Technologies LLC that provides ClickSeq-based kits and services including the methods described in this manuscript. A.L.R has a patent-pending on the method and use of tiled/targeted ClickSeq. * rdar : red, dry and rough cfu : colony forming unit RT : room temperature h : hour PCR : Polymerase chain reaction RT-qPCR : Reverse transcription quantitative real-time PCR Tn : Transposon NGS : next-generation sequencing TCRS : two-component regulatory system
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要