The effect of platelet-rich fibrin, platelet-rich plasma, and concentrated growth factor in the repair of full thickness rotator cuff tears.

Journal of shoulder and elbow surgery(2023)

引用 0|浏览0
暂无评分
摘要
BACKGROUND:Rotator cuff lesions rank among the prevalent causes of shoulder pain. Combining surgical interventions with growth factors, scaffolds, and stem cell therapies can effectively decrease the likelihood of rotator cuff repair recurrence. Platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor (CGF), isolated from blood and rich in growth factors, have a critical role in cell migration, cell proliferation, and angiogenesis during the tissue regeneration process. Investigations have further substantiated the beneficial impact of PRP and PRF on the biomechanical and histologic attributes of the tendon-bone interface. We aimed to investigate the effectiveness of CGF compared with PRF and PRP in the repair of rotator cuff lesions as a new treatment strategy. METHODS:Incision was performed on both shoulder regions of 21 adult rabbits. After 8 weeks, both shoulders of the rabbits were repaired by suturing. PRF and CGF were administered to 2 separate groups along with the repair. Tissues were collected for biomechanical measurements and histologic evaluations. RESULTS:Histologically, CGF, PRF, and PRP showed similar results to the healthy control group. The level of improvement was significant in the PRF and PRP groups. In the PRF group, the distribution of Ki67 (+), CD31 (+), and CD34 (+) cells was determined intensely in the tendon-bone junction regions. Apoptotic cells increased significantly in the repair group compared with the healthy group, whereas fewer apoptotic cells were found in the PRF-, PRP-, and CGF-applied groups. In the biomechanical results, no statistical difference was recorded among the groups. CONCLUSION:The use of PRF, PRP, and CGF in rotator cuff repair shows promise in shortening the treatment period and preventing the recurrence of rotator cuff lesions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要