Fabrication of directly 2D Z-scheme CuTiO3/g-C3N4 with high photocatalytic activities for CO2 reduction and hydrogen production

Journal of Solid State Chemistry(2024)

引用 0|浏览4
暂无评分
摘要
Photocatalysts based on Z-scheme heterostructure have been extensively investigated for CO2 reduction and hydrogen production, which solve the problem of high electron-hole pair complexation and low reduction and oxidation capacity in photocatalysts. Here, two-dimensional CuTiO3/g-C3N4 (CTO/CN) photocatalysts with directly Z-scheme heterostructure are prepared by effective manipulation of different components of CuTiO3 (CTO) nanoparticles on 2D (two-dimension) porous g-C3N4 (CN) nanosheets via in-situ growing strategy. Benefited from the special electronic structure, it demonstrates that the 4.0 % CTO/CN sample has an excellent photocatalytic activity for the reduction of CO2 to H2 (at a speed of 19.56 mu mol g-1 h-1) and CO (at a speed of 19.93 mu mol g-1 h-1), which are upper than those of pure g-C3N4 by 43.5 and 17.1 times, respectively. Furthermore, the 4.0 % CTO/CN sample exhibits utstanding performance in electrocatalytic hydrogen production. This synthetic strategy is useful for constructing a 2D Z-scheme heterostructure for applications in energyrelated areas.
更多
查看译文
关键词
In-situ growing,Z-Scheme heterostructure,PhotocatalyticCO2 reduction,Electrochemical stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要