ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations

Biomedicines(2023)

引用 0|浏览2
暂无评分
摘要
Myotonia congenita is a hereditary muscle disease mainly characterized by muscle hyperexcitability, which leads to a sustained burst of discharges that correlates with the magnitude and duration of involuntary aftercontractions, muscle stiffness, and hypertrophy. Mutations in the chloride voltage-gated channel 1 (CLCN1) gene that encodes the skeletal muscle chloride channel (ClC-1) are responsible for this disease, which is commonly known as myotonic chloride channelopathy. The biophysical properties of the mutated channel have been explored and analyzed through in vitro approaches, providing important clues to the general function/dysfunction of the wild-type and mutated channels. After an exhaustive search for CLCN1 mutations, we report in this review more than 350 different mutations identified in the literature. We start discussing the physiological role of the ClC-1 channel in skeletal muscle functioning. Then, using the reported functional effects of the naturally occurring mutations, we describe the biophysical and structural characteristics of the ClC-1 channel to update the knowledge of the function of each of the ClC-1 helices, and finally, we attempt to point out some patterns regarding the effects of mutations in the different helices and loops of the protein.
更多
查看译文
关键词
myotonia,chloride channel,electrophysiology,channelopathy,mutation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要