Dynamic Patterns and Modeling of Early COVID-19 Transmission by Dynamic Mode Decomposition

Preventing chronic disease(2023)

引用 0|浏览0
暂无评分
摘要
Introduction Understanding the transmission patterns and dynamics of COVID-19 is critical to effective monitoring, intervention, and control for future pandemics. The aim of this study was to investigate the spatial and temporal characteristics of COVID-19 transmission during the early stage of the outbreak in the US, with the goal of informing future responses to similar outbreaks.Methods We used dynamic mode decomposition (DMD) and national data on COVID-19 cases (April 6, 2020-October 9, 2020) to model the spread of COVID-19 in the US as a dynamic system. DMD can decompose the complex evolution of disease cases into linear combinations of simple spatial patterns or structures (modes) with time-dependent mode amplitudes (coefficients). The modes reveal the hidden dynamic behaviors of the data. We identified geographic patterns of COVID-19 spread and quantified time-dependent changes in COVID-19 cases during the study period. Results The magnitude analysis from the dominant mode in DMD showed that California, Louisiana, Kansas, Georgia, and Texas had higher numbers of COVID-19 cases than other areas during the study period. States such as Arizona, Florida, Georgia, Massachusetts, New York, and Texas showed simultaneous increases in the number of COVID-19 cases, consistent with data from the Centers for Disease Control and Prevention.Conclusion Results from DMD analysis indicate that certain areas in the US shared similar trends and similar spatiotemporal transmission patterns of COVID-19. These results provide valuable insights into the spread of COVID-19 and can inform policy makers and public health authorities in designing and implementing mitigation interventions.
更多
查看译文
关键词
dynamic modeling decomposition,dynamic patterns,transmission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要