Electrochemical surface plasmon resonance approach to probe redox interactions between microbial extracellular polymeric substances and p-nitrophenol

JOURNAL OF ENVIRONMENTAL MANAGEMENT(2024)

引用 0|浏览0
暂无评分
摘要
Microbial extracellular polymeric substances with redox functional groups play a crucial role in the bio-conversion of pollutants, which can affect their reactivity toward diverse pollutants. However, the redox interactions between microbial EPS and pollutants have not addressed in depth due to the absence of essential analytical methodologies. In this study, we have developed an electrochemical-surface plasmon resonance (EC-SPR) system to investigate the interactions between EPS and p-nitrophenol (PNP) by simultaneously monitoring the electrochemical reaction and the binding kinetics. Moreover, in vitro PNP degradation experiments were performed in the presence of EPS across varying redox states to provide further verification of PNP reduction by EPS. The results indicated that direct electrochemical treatment successfully converted raw EPS (EPSraw) into reductive EPS (EPSred) and oxidized EPS (EPSox), respectively. The EC-SPR system served as a powerful tool for probing redox interactions between EPS at distinct redox states and PNP. The binding affinity of EPS to PNP was related to the redox states of EPS, following the order of EPSred > EPSraw > EPSox. EPS exhibited the capability to reduce PNP to p-aminophenol by donating electrons, and the reductive process highly depended on the redox states of EPS, primarily determined by their electron donating capacity. Importantly, direct electrochemical reduction treatment of EPS leads to a substantial improvement in the PNP removal efficiency from 33.8% (EPSraw) to 56.9% (EPSred). This work contributes to a comprehensive understanding of the critical role of EPS redox property in the conversion of refractory pollutants in aquatic environments.
更多
查看译文
关键词
Extracellular polymeric substances,Electron donating capability,Redox,Electrochemical surface plasmon resonance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要