Analysis of Winter Anomaly and Annual Anomaly Based on Regression Approach

Remote Sensing(2023)

引用 0|浏览1
暂无评分
摘要
Studying the temporal and spatial dependence of ionospheric anomalies using total electron content (TEC) can provide an important reference for developing empirical ionospheric models. In this study, winter anomaly, annual anomaly, and the contributions of winter anomaly to annual anomaly were investigated during solar cycle 24 (2008–2018) by using the global ionosphere maps of the Center for Orbit Determination in Europe during the geomagnetic activity quiet period (Kp ≤ 5) based on a regression approach. Our detailed analysis shows the following: (1) Winter anomaly is more significant at 11:00–13:00 local time (LT), and the region of winter anomaly extends from North America to the Far East with increasing solar activity levels. (2) The minimum level of solar activity corresponding to the occurrence of winter anomaly was calculated at each grid point, which can provide a reference for single-point ionospheric modeling. (3) The annual anomaly reaches its maximum at 12:00 LT when the TEC in December is 34.4% higher than in June. (4) At 12:00 LT, the winter anomaly contributes up to 32% to the annual anomaly (at this time, the winter hemisphere contributes 57% to the annual anomaly).
更多
查看译文
关键词
annual anomaly,winter anomaly,regression approach
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要