An arbitrary order numerical framework for transient heat conduction problems

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER(2024)

引用 1|浏览3
暂无评分
摘要
This paper presents an arbitrary order numerical approach for achieving highly accurate solutions in transient heat conduction problems. In this framework, the arbitrary order Krylov deferred correction method (KDC) is first utilized to discretize the temporal direction of the problems, ensuring high-accuracy results by selecting an adequate number of Gaussian nodes. During each time iteration, a boundary value problem in terms of the inhomogeneous modified Helmholtz equation is generated by utilizing the KDC methodology. Subsequently, the arbitrary order GFDM is introduced to solve the boundary value problem, allowing for flexible selection of the Taylor series expansion order to improve spatial accuracy. Consequently, the present numerical framework is of arbitrary order of accuracy and very stable through integrating advantages of the arbitrary order KDC and the arbitrary order GFDM. The developed numerical framework is ultimately verified for its characteristic of high accuracy and stability through two numerical examples in two-dimensions and three numerical examples in three-dimensions. The results highlight the significant improvement in numerical accuracy achieved by the present arbitrary-order numerical approach for long-time simulations.
更多
查看译文
关键词
Krylov deferred correction method,Arbitrary order generalized finite difference,method,Convergence rate,Long-time simulations,Transient heat conduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要