Bioactive composite hydrogel with effects of robust promoting osteogenesis and immunomodulation for osteoporotic bone regeneration

Chemical Engineering Journal(2023)

引用 1|浏览11
暂无评分
摘要
Osteoporotic bone defect is an intractable challenge in clinical practice, involving impaired bone repair ability and abnormal immune response. Despite the development of various tissue-engineered scaffolds for osteoporotic bone repair, the pathogenesis of osteoporosis has been lacking consideration, resulting in poor efficacy. Here, we integrated short-chain chitosan (CS) and nanoparticulate hydroxyapatite (nHAp) into a covalent tetra-armed poly (ethylene glycol) (tetra-PEG) network to create a composite hydrogel (PEG/nHAp/CS, PHC). The constructed PHC hydrogel exhibited ability of enhancing osteogenesis with high mechanical strength, excellent surface properties, and good biocompatibility. PHC hydrogel also had immunomodulatory effects of promoting M2 macrophage polarization and suppressing M1 macrophage polarization via antagonizing TLR4/NF-kappa B signaling. PHC hydrogel further increased osteogenic capacity and inhibited osteoclast formation and resorption indirectly. Parathyroid hormone (PTH) could be effective loaded and sustainable released in the PHC hydrogel (PTH@PHC), in which the osteogenic ability was further enhanced via activation of cAMP/PKA/CREB signaling. By using an osteoporotic calvaria bone defect rat model, we demonstrated that the PTH@PHC hydrogel was able to improve bone regeneration and bone defects healing. Findings of this study indicated that the bioactive composite hydrogel has powerful osteogenic-promoting potency and immunomodulation, which provides a promising therapeutic strategy for future clinical repair of osteoporotic bone defect.
更多
查看译文
关键词
Osteoporosis,Bone defect,Bioactive hydrogel,Macrophage polarization,Parathyroid hormone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要