Single-Molecule Methane Sensing Using Palladium-Functionalized nIR Fluorescent Single-Walled Carbon Nanotubes

ACS sensors(2023)

引用 0|浏览12
暂无评分
摘要
There has been considerable interest in detecting atmospheric and process-associated methane (CH4) at low concentrations due to its potency as a greenhouse gas. Nanosensor technology, particularly fluorescent single-walled carbon nanotube (SWCNT) arrays, is promising for such applications because of their chemical sensitivities at single-molecule detection limits. However, the methodologies for connecting the stochastic molecular fluctuations from gas impingement on such sensors require further development. In this work, we synthesize Pd-conjugated ss(GT)(15)-DNA-wrapped SWCNTas near-infrared (nIR) fluorescent, single-molecule sensors of CH4. The complexes are characterized using X-ray photoelectron spectroscopy (XPS) and spectrophotometry, demonstrating spectral changes between the Pd2+ and Pd-0 oxidation states. The nIR fluctuations generated upon exposure from 8 to 26 ppb of CH4 were separated into high- and low-frequency components. Aggregating the low-frequency components for an array of sensors showed the most consistent levels of detection with a limit of 0.7 ppb. These results advance the hardware and computational methods necessary to apply this approach to the challenge of environmental methane sensing.
更多
查看译文
关键词
methane,nanotubes,single-molecule,palladium-functionalized,single-walled
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要