Making context explicit in equation construction and interpretation: Symbolic blending

Physical Review Physics Education Research(2023)

引用 0|浏览1
暂无评分
摘要
Much of physics involves the construction and interpretation of equations. Research on physics students' understanding and application of mathematics has employed Sherin's symbolic forms or Fauconnier and Turner's conceptual blending as analytical frameworks. However, previous symbolic forms analyses have commonly treated students' in-context understanding as their conceptual schema, which was designed to represent the acontextual, mathematical justification of the symbol template (structure of the expression). Furthermore, most conceptual blending analyses in this area have not included a generic space to specify the underlying structure of a math-physics blend. We describe a conceptual blending model for equation construction and interpretation, which we call symbolic blending, that incorporates the components of symbolic forms with the conceptual schema as the generic space that structures the blend of a symbol template space with a contextual input space. This combination complements symbolic forms analysis with contextual meaning and provides an underlying structure for the analysis of student understanding of equations as a conceptual blend. We present this model in the context of student construction of nonCartesian differential length vectors. We illustrate the affordances of such a model within this context and expand this approach to other contexts within our research. The model further allows us to reinterpret and extend literature that has used either symbolic forms or conceptual blending.
更多
查看译文
关键词
symbolic blending,equation construction,interpretation,context
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要