Fate of glyphosate in lakes with varying trophic levels and its modification by root exudates of submerged macrophytes

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 0|浏览4
暂无评分
摘要
Accelerated eutrophication in lakes reduces the number of submerged macrophytes and alters the residues of glyphosate and its degradation products. However, the effects of submerged macrophytes on the fate of glyphosate remain unclear. We investigated eight lakes with varying trophic levels along the middle and lower reaches of the Yangtze River in China, of which five lakes contained either glyphosate or aminomethylphosphate (AMPA). Glyphosate and AMPA residues were significantly positively correlated with the trophic levels of lakes (P < 0.01). In lakes, glyphosate is degraded through the AMPA and sarcosine pathways. Eight shared glyphosatedegrading enzymes and genes were observed in different lake sediments, corresponding to 44 degrading microorganisms. Glyphosate concentrations in sediments were significantly higher in lakes with lower abundances of soxA (sarcosine oxidase) and soxB (sarcosine oxidase) (P < 0.05). In the presence of submerged macrophytes, oxalic and malonic acids secreted by the roots of submerged macrophytes increased the abundance of glyphosatedegrading microorganisms containing soxA or soxB (P < 0.05). These results revealed that a decrease in the number of submerged macrophytes in eutrophic lakes may inhibit glyphosate degradation via the sarcosine pathway, leading to a decrease in glyphosate degradation and an increase in glyphosate residues.
更多
查看译文
关键词
Glyphosate residues,Degradation pathway,Degrading genes,Microorganism,Organic acids
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要