Adaptive Experimental Design for Intrusion Data Collection

Kate Highnam, Zach Hanif, Ellie Van Vogt, Sonali Parbhoo, Sergio Maffeis,Nicholas R. Jennings

Conference on Applied Machine Learning in Information Security(2023)

引用 0|浏览4
暂无评分
摘要
Intrusion research frequently collects data on attack techniques currently employed and their potential symptoms. This includes deploying honeypots, logging events from existing devices, employing a red team for a sample attack campaign, or simulating system activity. However, these observational studies do not clearly discern the cause-and-effect relationships between the design of the environment and the data recorded. Neglecting such relationships increases the chance of drawing biased conclusions due to unconsidered factors, such as spurious correlations between features and errors in measurement or classification. In this paper, we present the theory and empirical data on methods that aim to discover such causal relationships efficiently. Our adaptive design (AD) is inspired by the clinical trial community: a variant of a randomized control trial (RCT) to measure how a particular ``treatment'' affects a population. To contrast our method with observational studies and RCT, we run the first controlled and adaptive honeypot deployment study, identifying the causal relationship between an ssh vulnerability and the rate of server exploitation. We demonstrate that our AD method decreases the total time needed to run the deployment by at least 33%, while still confidently stating the impact of our change in the environment. Compared to an analogous honeypot study with a control group, our AD requests 17% fewer honeypots while collecting 19% more attack recordings than an analogous honeypot study with a control group.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要