Transition from Sequential to Concerted Proton-Coupled Electron Transfer of Water Oxidation on Semiconductor Photoanodes

Journal of the American Chemical Society(2023)

引用 0|浏览7
暂无评分
摘要
Accelerating proton transfer has been demonstrated as key to boosting water oxidation on semiconductor photoanodes. Herein, we study proton-coupled electron transfer (PCET) of water oxidation on five typical photoanodes [i.e., alpha-Fe2O3, BiVO4, TiO2, plasmonic Au/TiO2, and nickel-iron oxyhydroxide (Ni1-xFexOOH)-modified silicon (Si)] by combining the rate law analysis of H2O molecules with the H/D kinetic isotope effect (KIE) and operando spectroscopic studies. An unexpected and universal half-order kinetics is observed for the rate law analysis of H2O, referring to a sequential proton-electron transfer pathway, which is the rate-limiting factor that causes the sluggish water oxidation performance. Surface modification of the Ni1-xFexOOH electrocatalyst is observed to break this limitation and exhibits a normal first-order kinetics accompanied by much enhanced H/D KIE values, facilitating the turnover frequency of water oxidation by 1 order of magnitude. It is the first time that Ni1-xFexOOH is found to be a PCET modulator. The rate law analysis illustrates an effective strategy for modulating PCET kinetics of water oxidation on semiconductor surfaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要