Frequency tunable single photon diode based on giant atom coupling to a waveguide

OPTICS EXPRESS(2023)

引用 0|浏览5
暂无评分
摘要
The single photon scattering properties in a waveguide coupling to a giant atom with a three-level system are investigated theoretically. One of the transitions of the giant atom couples to the waveguide at two points while the other one is driven by a classical field. Using the analytical expressions of the single photon scattering amplitudes, the conditions for realizing perfect single photon nonreciprocal scattering are discussed in both Markovian regime and non-Markovian regime. In the Markovian regime, the perfect non-reciprocity can be realized by adjusting the external classical field, the energy dissipation of the giant atom, the phase difference between the two coupling strengths and the accumulated phase resulting from the photon propagating between the two coupling points. In the non-Markovian regime, the non-reciprocal scattering phenomenon becomes more abundant due to the time delay. However, the analytical results show that the perfect non-reciprocity can still be achieved. When the incident photon is resonant with the giant atom, the nonreciprocity can be switched by controlling the classical field. For the non-resonant single photon, one can adjust the Rabi frequency of the classical field to obtain the perfect non-reciprocal single photon transmission. Our work provides a manner to realize a frequency tunable single photon diode.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要