Oral self-nanoemulsifying drug delivery systems for enhancing bioavailability and anticancer potential of fosfestrol: In vitro and in vivo characterization

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V(2023)

引用 0|浏览6
暂无评分
摘要
Purpose The objective of the current research work was to fabricate a fosfestrol (FST)-loaded self-nanoemulsifying drug delivery system (SNEDDS) to escalate the oral solubility and bioavailability and thereby the effectiveness of FST against prostate cancer.Methods 3(2) full factorial design was employed, and the effect of lipid and surfactant mixtures on percentage transmittance, time required for self-emulsification, and drug release were studied. The optimized solid FST-loaded SNEDDS (FSTNE) was characterized for in vitro anticancer activity and Caco-2 cell permeability, and in vivo pharmacokinetic parameters.Results Using different ratios of surfactant and co-surfactant (Km) a pseudo ternary phase diagram was constructed. Thirteen liquid nano emulsion formulations (LNE-1 to LNE-13) were formulated at Km = 3:1. LNE-9 exhibited a higher % transmittance (99.25 +/- 1.82 %) and a lower self-emulsification time (24 +/- 0.32 s). No incompatibility was observed in FT-IR analysis. Within 20 min the solidified FST loaded LNE-9 (FSTNE) formulation showed almost complete drug release (98.20 +/- 1.30 %) when compared to marketed formulation (40.36 +/- 2.8 %), and pure FST (32 +/- 3.3 %) in 0.1 N HCl. In pH 6.8 phosphate buffer, the release profiles are found moderately higher than in 0.1 N HCl. FSTNE significantly (P < 0.001) inhibited the PC-3 prostate cell proliferation and also caused apoptosis (P < 0.001) compared to FST. The in vitro Caco-2 cell permeability study results revealed 4.68-fold higher cell permeability of FSTNE than FST. Remarkably, 4.5-fold rise in bioavailability was observed after oral administration of FSTNE than plain FST.Conclusions FSTNE remarkably enhanced the in vitro anticancer activity and Caco-2 cell permeability, and in vivo bioavailability of FST. Thus, FST-SNEDDS could be utilized as a potential carrier for effective oral treatment of prostate cancer.
更多
查看译文
关键词
Fosfestrol,Nano emulsion,Bioavailability,Prostate cancer,Flow cytometer analysis,Membrane potential
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要