Structural and spectroscopic characterization of large boron heterocyclic radicals: Matrix infrared spectroscopy and quantum chemical calculations

Jiaping Xu, Chuan-Ming Dai,Xin Xu,Jiwen Jian

SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY(2024)

引用 0|浏览0
暂无评分
摘要
Six boron heterocyclic radicals with different conformations or configurations were synthesized in solid neon and identified by matrix isolation infrared spectroscopy as well as quantum-chemical calculations. The ground-state boron atom selectively attacks the C = C bond of cycloheptene forming eta 2 (1,2)-BC7H12 complex (A), which contains a chair conformation and a boat conformation. Species A isomerizes to the 2,3,4,5,6,7-hexahydroborocine radical (B), which involves an eight-membered boron heterocyclic ring and also has two isomers observed. The 1-(prop-1-en-1-yl)-2,3,4-dihydro borole radical (C) with E-configuration and Z-config-uration is generated as the final product under UV light irradiation through ring contraction reaction and the hydrogen atom transfer reaction. The observation of species A and further photo-isomerization to species C is consistent with theoretical predictions that these reactions are thermodynamically exothermic and kinetically facile. This work not only provides a possible route for future design and synthesis of corresponding borole derivatives, but also provides new insights into the structural and spectroscopic information of boron heterocyclic radicals with different conformations and configurations.
更多
查看译文
关键词
large boron heterocyclic radicals,spectroscopic characterization,quantum chemical calculations,spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要