A heat flux sensor leveraging the transverse Seebeck effect in elemental antimony

Sensors and Actuators A: Physical(2023)

引用 0|浏览3
暂无评分
摘要
Certain configurations of anisotropic single crystal materials can generate a thermoelectric voltage orthogonal to an induced temperature gradient. This phenomenon is known as the Transverse Seebeck Effect (TSE) and can be leveraged to fabricate simple and robust heat flux sensors. Only a small number of materials have been considered as TSE-based transducers and, among these, few have been developed into sensors with ruggedization against chemical and mechanical degradation. Here, we report on the fabrication and characterization of a rugged TSE-based heat flux sensor using prismatic antimony single crystals. The heat flux sensor was tested under static and dynamic heating scenarios. The sensor has a linear responsivity of 16.8 µV/(W/cm2) to heat fluxes spanning more than two orders of magnitude and a time constant of 4.4 s. The sensor’s response to localized heating, probed with a laser scanning technique, validated that the transduction mechanism is primarily the TSE by ruling out a sizable contribution from the conventional Seebeck effect. Finite element analysis corroborated that components used in the sensor package are the primary determinants of the time constant and the decrement of the responsivity from its theoretical maximum. Design principles that may be applied to elicit a faster transient response or higher responsivity are proposed. The results establish single crystal antimony as a promising transducer material for heat flux measurement systems and demonstrate potential effects of ruggedization on sensor performance.
更多
查看译文
关键词
Heat flux sensor, Thermoelectrics, Transverse Seebeck effect, Antimony, Single crystal, Anisotropy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要