TELP theory: Elucidating the major observations of Rieger et al. 2021 in mitochondria

Mitochondrial Communications(2023)

引用 0|浏览0
暂无评分
摘要
The transmembrane-electrostatically localized protons (TELP) theory may represent a complementary development to Mitchell's chemiosmotic theory. The combination of the two together can now excellently explain the energetics in mitochondria. My calculated transmembrane-attractive force between an excess proton and an excess hydroxide explains how TELP may stay within a 1-nm thin layer at the liquid-membrane interface. Consequently, any pH sensor (sEcGFP) located at least 2–3 nm away from the membrane surface will not be able to see TELP. This feature as predicted from the TELP model was observed exactly in the experiment of Rieger et al., 2021. In contrast to their belief “the Δp at ATP synthase is almost negligible under OXPHOS conditions”, I find, when TELP activity is included in the energy calculations, there is plenty of total protonic Gibbs free energy (ΔGT) well above the physiologically required value of −24.5 kJ mol−1 to drive ATP synthesis through FoF1-ATP synthase.
更多
查看译文
关键词
mitochondria,telp theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要