Standardization of Cu2O nanocubes synthesis: Role of precipitation process parameters on physico-chemical and photo-electrocatalytic properties

Chemical Engineering Research and Design(2023)

引用 1|浏览2
暂无评分
摘要
A facile, reproducible, and scalable wet precipitation method was optimized to synthetise Cu2O nanocubes with tuneable morphology and photocatalytic properties. The synthesis process was standardized by controlling the flow rate of addition of the reducing agent. This allowed to control the Cu2O crystallites size, which decreased from 60 nm to 30 nm by increasing the L-ascorbic acid flow rate, while maintaining a high yield (ranging from 87% to 97%) and reproducibility, as confirmed by X-Ray diffraction, scanning electron microscopy, and X-Ray photoelectron spectroscopy analyses. Moreover, the role of the synthesis conditions on the Cu2O nanocubes specific surface area and electrochemical surface area (ECSA) were investigated and correlated to their photo-electrocatalytic activity for the reduction of water and CO2 under ambient conditions, on electrodes made by air brushing. Decreasing of the Cu2O crystallites size enhanced the photo-electrocatalytic activity most probably due to a superior surface area, ECSA and an optimum valence and conduction band positions, which improves the charge transfer properties of the photocatalyst. The here proposed methodology and outcomes are very promising for the scale-up of the precipitation synthesis, not only of Cu2O but also of other nanostructured metal oxides to be exploited as photo-catalysts for environmental and energy applications.(c) 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY-NC-ND license (http://creati-vecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Tuneable morphology,Cu2O nanocubes,Synthesis standardization,Precipitation,PhotoelectrochemicalCO2,conversion,Water reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要