Microcontact printing of choline oxidase using a polycation-functionalized zwitterionic polymer as enzyme immobilization matrix.

The Analyst(2023)

引用 0|浏览0
暂无评分
摘要
Highly sensitive and selective choline microbiosensors were constructed by microcontact printing (μCP) of choline oxidase (ChOx) in a crosslinked, polyamine-functionalized zwitterionic polymer matrix on microelectrode arrays (MEAs). μCP has emerged as a potential means to create implantable, multiplexed sensor microprobes, which requires the targeted deposition of different sensor materials to specific microelectrode sites on a MEA. However, the less than sufficient enzyme loading and inadequate spatial resolution achieved with current μCP approaches has limited adoption of the method for electroenzymatic microsensors. A novel polymer, poly(2-methacryloyloxyethyl phosphorylcholine)--poly(allylamine hydrochloride) (PMPC--PAH), has been developed to address this challenge. PMPC--PAH contributes to a higher viscosity "ink" that enables thicker immobilized ChOx deposits of high spatial resolution while also providing a hydrophilic, biocompatible microenvironment for the enzyme. Electroenzymatic choline microbiosensors with sensitivity of 639 ± 96 nA μM cm (pH 7.4; = 4) were constructed that also are selective against both ascorbic acid and dopamine, which are potential electroactive interfering compounds in the mammalian brain. The high sensitivities achieved can lead to smaller MEA microprobes that minimize tissue damage and make possible the monitoring of multiple neurochemicals simultaneously with high spatial resolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要